Code: 20CS3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

OPERATING SYSTEMS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					Max.				
			BL	СО					
					Marks				
	UNIT-I								
1	a)	Distinguish User View and System View of	L2	CO1	8 M				
		an Operating system.							
	b)	Explain storage device hierarchy with neat	L2	CO1	6 M				
		diagram.							
OR									
2	a)	Describe different modes of operating	L2	CO1	7 M				
		system operations.							
	b)	Compare and contrast Multiprocessor	L2	CO1	7 M				
		systems with Clustered Systems.							
UNIT-II									
3	Dra	w the Gantt chart and calculate the average	L3	CO2	14 M				
	wai	ting time and average turnaround time for							
	priority scheduling by considering the following								
	information.								

		Process	Burst Time	Priority				
		<i>P</i> 1	10	3				
		P2	1	1				
		P3	2	4				
		P4	1	5				
		<i>P</i> 5	5	2				
			0	R	l			
4	a)	Explain w	rith neat sketch	of Queueir	ng- L2	CO2	7 M	
		diagram	representation	of proce	ess			
scheduling.								
	b)	Discuss	benefits of	multithread	led L2	CO1	7 M	
	programming.							
UNIT-III								
5	a)	Explain I	Peterson's solution	on for critic	cal L2	CO3	7 M	
		section problem.						
	b)	b) Illustrate the mutex lock hardware solution L3 CO3 7 M						
	for critical section problem.							
			0	R				
6	Exp	olain Banke	rs algorithm with	an example	for L2	CO3	14 M	
	deadlock avoidance.							
UNIT-IV								
7	Rel	ate imple	ementation of	paging a	and L3	CO4	14 M	
	segmentation with neat diagrams.							
	OR							

8	Consider the following page reference string:	L3	CO2	14 M			
	1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3,						
	6.						
	Calculate the page faults would occur for the						
	following replacement algorithms by assuming						
	number of frames as three, four, five, six, and						
	seven respectively. Remember that all frames						
	are initially empty, so your first unique pages						
	will cost one fault each.						
	a) LRU page replacement						
	b) FIFO page replacement						
	c) Optimal page replacement						
UNIT-V							
9	Explain any four disk scheduling algorithms	L2	CO2	14 M			
	with examples.						
OR							
10	Compare various disk allocation methods.	L4	CO4	14 M			